Intravenous administration of Honokiol provides neuroprotection and improves functional recovery after traumatic brain injury through cell cycle inhibition.

نویسندگان

  • Haiquan Wang
  • Zhengbu Liao
  • Xiaochuan Sun
  • Quanhong Shi
  • Gang Huo
  • Yanfeng Xie
  • Xiaolan Tang
  • Xinggang Zhi
  • Zhaohua Tang
چکیده

Recently, increasing evidence has shown that cell cycle activation is a key factor of neuronal death and neurological dysfunction after traumatic brain injury (TBI). This study aims to investigate the effects of Honokiol, a cell cycle inhibitor, on attenuating the neuronal damage and facilitating functional recovery after TBI in rats, in an attempt to unveil its underlying molecular mechanisms in TBI. This study suggested that delayed intravenous administration of Honokiol could effectively ameliorate TBI-induced sensorimotor and cognitive dysfunctions. Meanwhile, Honokiol treatment could also reduce the lesion volume and increase the neuronal survival in the cortex and hippocampus. The neuronal degeneration and apoptosis in the cortex and hippocampus were further significantly attenuated by Honokiol treatment. In addition, the expression of cell cycle-related proteins, including cyclin D1, CDK4, pRb and E2F1, was significantly increased and endogenous cell cycle inhibitor p27 was markedly decreased at different time points after TBI. And these changes were significantly reversed by post-injury Honokiol treatment. Furthermore, the expression of some of the key cell cycle proteins such as cyclin D1 and E2F1 and the associated apoptosis in neurons were both remarkably attenuated by Honokiol treatment. These results show that delayed intravenous administration of Honokiol could effectively improve the functional recovery and attenuate the neuronal cell death, which is probably, at least in part, attributed to its role as a cell cycle inhibitior. This might give clues to developing attractive therapies for future clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat

Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...

متن کامل

Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?

Objective(s): Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Materials and Methods: Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-T...

متن کامل

Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat

Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...

متن کامل

Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

Objective(s):Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. Materials and Methods: Ovariectomized rats were divided into 10 gr...

متن کامل

Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis

Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2014